
Maintainable CSS
architecture in the

Gutenberg era

Hi! I’m Sami
Keijonen from

Finland
Front-end developer at 10up

Building accessible web
@samikeijonen

Talk topics
● Writing scalable and maintainable CSS

using ITCSS, BEM and CSS guidelines.

● How to avoid repeating CSS in front-end
and in the block editor.

● How to automate block editor styles from
front-end styles.

Many CSS methodologies
● Inverted Triangle CSS (ITCSS)

● Object-Oriented CSS (OOCSS).

● Scalable and Modular architecture for CSS
(SMACSS).

● Atomic design.

● Utility-first CSS.

https://www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/
http://oocss.org/
https://smacss.com/
http://atomicdesign.bradfrost.com/
https://frontstuff.io/in-defense-of-utility-first-css

Many CSS methodologies
● CSS Modules.
● CSS in JS.

https://github.com/css-modules/css-modules
https://cssinjs.org/

High level Goals
● No conflicts when updating CSS.

○ How many times we have broke something else
when updating one line of CSS.

● Where to add or update CSS.
○ More efficient workflow when CSS structure is

clear. Avoid guessing is this the correct place.

High level Goals
● No deep specificity.

○ How many times we have added more specificity to
modify components. And then more. And then
more. And then more. This needs to stop.

● No conflicts with JS.
○ If component uses JS, developers should instantly

know about it.

ITCSS CSS architecture
● Separate main style.css codebase to

several sections (layers).
● Every sections add more specificity to CSS

in the right order.

Example layers in ITCSS

Settings
Global variables like fonts and colors.

:root {

 --font-family-sans: "Roboto", sans-serif;

 --font-family-serif: "Playfair Display", serif;

}

Tools
Mixins and functions.

@define-mixin button-block {

 background-color: var(--color-primary);

 ...

}

Generic
Resets, box-sizing etc.

@import "normalize.css";

Elements
Unclassed HTML elements like <h1> and
<blockquote>

blockquote {

 border-left: var(--spacing-s) solid;

 ...

}

Layouts
Undecorated design patterns, such as global
layouts and wrappers.

.grid {

 display: grid;

 ...

}

Blocks
Styles for Core and custom blocks.

Note: I dequeue Core block styles from
front-end and editor.

This way we don’t have to fight specificity
war with Core styles.

Components
Styles for components, such as navigation
and pagination.

.menu {

 display: flex;

 ...

}

Custom layer
If there is need for custom layer, feel free to
add it. It’s OK to be before blocks and
components.

Utilities
Utility classes like .screen-reader-text
and prefers-reduced-motion

.screen-reader-text {

 clip-path: inset(50%);

 ...

}

Class prefixes
● When working on large dev team with

different backgrounds, class prefixes can
help understanding what job classes are
doing.

● And in what layer they belong.

Example class prefixes
● .l- for layouts, such as .l-grid
● .c- for components, such as .c-menu
● .u- for utilities, such as .u-reset-list

Example class prefixes
● .is- and .has- for specific states, such as

.is-opened or .has-primary-color
● .js- for targeting JavaScript-specific

functionality, such as .js-menu-toggle
○ These classes are never used for styling, only for

JS behaviour

CSS guidelines and
linting
● Follow (some) CSS guidelines.
● Use stylelint to enforce those guidelines.

https://github.com/chris-pearce/css-guidelines
https://stylelint.io/

BEM naming convention
● BEM stands for “Block Element Modifier”.
● Helps with our goals.

http://getbem.com/

BEM syntax
● Block is the primary component block,

such as .menu

● Element is a child of the primary block,
such as .menu__item

BEM syntax
● Modifier is a variation of a component

style, such as .menu--primary

BEM in HTML
<nav class=”menu menu--primary”>

 <ul class=”menu__items”>

 <li class=”menu__item”>Home

 <li class=”menu__item”>About

</nav>

BEM in CSS
// CSS
.menu {

 &--primary {}

 &__items {}

 &__item {}

 &__anchor {}

}

// Compiled CSS
.menu {}

.menu--primary {}

.menu__items {}

.menu__item {}

.menu__anchor {}

It’s OK to
not nest
selectors

// Written CSS
.menu {}

.menu--primary {}

.menu__items {}

.menu__item {}

.menu__anchor {}

http://bradfrost.com/blog/post/sass-selectors-to-nest-or-not-to-nest/
http://bradfrost.com/blog/post/sass-selectors-to-nest-or-not-to-nest/
http://bradfrost.com/blog/post/sass-selectors-to-nest-or-not-to-nest/

How about block editor
styles
● Dequeue Core block styles from front-end

and editor.

● Enqueue almost the same stylesheet for
editor than in front-end. Not much manual
work.

How about block editor
styles
● Use SASS nesting or PostCSS plugins to

add .editor-styles-wrapper class
automatically.

Nesting in SASS
@import "settings/variables.css";

@import "tools/mixins.css";

// Editor CSS wrapper.
.editor-styles-wrapper {

 @import "elements/index.css";

 @import "blocks/index.css";

}

Plugins in PostCSS
// Styles for editor almost the same as in front-end.

@import "settings/variables.css";

@import "tools/mixins.css";

// .editor-styles-wrapper prefix class added automatically.

@import "elements/index.css";

@import "blocks/index.css";

...

Plugins in PostCSS
● PostCSS Editor Styles

https://github.com/m-e-h/postcss-editor-styles

CSS added manually to
editor
● Typography.

● Post title.

● Block width, wide, and full widths.

● Search block, code block

Example
theme

WC Nordic 2019

https://github.com/samikeijonen/wcnordic2019

Thank you!
Sami Keijonen

@samikeijonen

https://twitter.com/samikeijonen

